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Abstract. A stochastic approximation algorithm for estimating multichannel coefficients is pro-
posed, and the estimate is proved to converge to the true parameters a.s. up-to a constant scaling
factor. The estimate is updated after receiving each new observation, so the output data need not be
collected in advance. The input signal is allowed to be dependent and the observation is allowed to
be corrupted by noise, but no noise statistics are used in the estimation algorithm.
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1. Introduction

For recent years the blind channel identification and blind equalization have at-
tracted great research interest in the area of signal processing and communica-
tion ([9,10,13]), and many estimation algorithms have been proposed (see e.g.
[6,7,11,12,14-16]). Most results published so far are concerned with “block” al-
gorithms, i.e., the estimation for channel coefficients and for input signal is carried
out after having entire data been collected. In contrast to this, in the recent papers
[5,18] the on-line recursive channel estimation algorithms have been proposed,
where the sample size N of the output data is not fixed and the estimate is updated
by use of each observation of the channel output. It is proved in [5], that the
estimate for channel coefficients converges a.s. to the true ones up-to a constant
scaling factor where the channel input may be random or deterministic and the
observations may be free of or corrupted by noise. However, in the case where the
observation is with additive noise, the noise variance is used in the algorithm pro-
posed in [5]. This greatly limits the potential application of the algorithm. Further,
the input signal is required to be mutually independent in [5]. The aim of this paper
is to remove using the noise variance in the algorithm, to extend the input signal

� Supported by the National Key Project of China and the National Natural Science foundation
of China.
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from independent to dependent, and to prove the a.s. convergence of the proposed
algorithm.

Stochastic approximation ([1,3,4,8]) is a tool to deal with root-seeking problems
for an unknown regression function which can be observed but the observations are
corrupted by errors which may contain both the random noise and the structural
error where the vector h0 composed of channel coefficients is the unique root of
the unknown regression function. In the present case the noise variance is unknown,
and this causes additional error in the observations. As a result, the root set of the
corresponding regression function no longer consists of a singleton but a set of
isolated points including the sought-for h0. After establishing the convergence of
the applied stochastic approximation algorithm the key difficulty is to clarify of the
limit is h0 or not.

We overcome this difficulty by using a property of stochastic approximation
consisting in that the algorithm cannot converge to an unstable equilibrium of the
associated homogeneous difference equation if the noise added to the difference
equation effects in all directions. As a matter of fact, it will be shown that the
algorithm using noisy data converges to an eigenvector of the matrix C to be
defined later on, and under some reasonable conditions on the observation noise
the limit of the algorithm must be the eigenvector corresponding to the minimum
eigenvalue (= 0) of C. On the other hand, it turns out that the vector composed
of the channel coefficients coincides with this eigenvector up-to a constant scaling
factor. This will be demonstrated in the subsequent sections.

In Section 2, the recursive algorithm for estimating channel coefficients is def-
ined. In Section 3, conditions used for convergence of the algorithm are listed and
some auxiliary lemmas are proved. The main convergence theorem and its proof
are given in Section 4, but the proof for a technical point is placed in the Appendix.
A brief conclusion is contained in Section 5.

2. Recursive Algorithm for Blind Identification

Let sk be one-dimensional input, xk = (x
(1)
k , · · · , x

(p)

k )τ be the output of p sensors
at time k, and let xk be related with sk as follows:

xk =
L∑

i=0

hisk−i ,

where hi = (h
(1)
i , · · · , h

(p)

i )τ , i = 0, · · · , L, are unknown channel coefficients.
Denote by h(j) = (h

(j)

0 , · · · , h
(j)

L )τ , the coefficients of the j th channel j =
1, · · · , p, and by a long vector

h0 = (h(τ )

0 , · · · , h(τ )
L )τ (1)

the coeffficients of the whole system.
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Assume the observation of the output is corrupted by noise, and the observation
at time k is

yk = xk + ξk =
L∑

i=0

hisk−i + ξk,

where ξk = (ξ
(1)
k , · · · , ξ

(p)

k )τ is the observation noise.
The problem of blind channel identification based on noisy observations is to

estimate h0 by using the data {yi , i = 1, · · · , k}. Further, we want to recursively
estimate h0 updating the estimate hk for h0 at time k by using the new observation
yk+1, k = 1, 2, · · · .

For defining estimation algorithm we introduce the matrices Xk and Nk as
follows:

Xk =




x
(2)
k −x

(1)
k 0 0 0

x
(3)
k 0 −x

(1)
k 0 0

...
...

...
. . .

...

x
(p)

k 0 0 0 −x
(1)
k

0 x
(3)
k −x

(2)
k 0 0

...
...

...
. . .

...

0 x
(p)

k 0 0 −x
(2)
k· · · · · · · · · · · · · · ·

...
...

...
...

...

· · · · · · · · · · · · · · ·
0 0 0 x

(p)

k −x
(p−1)

k




.

Define matrix Nk with the same structure as Xk but with x
(i)
k replaced by ξ

(i)
k .

Further define

�k = (Xk, · · · , Xk−L), �k = (Nk, · · · , Nk−L) (2)

and

�k = �k + �k. (3)

It is clear that �k, �k and �k are p(p − 1)/2 × p(L + 1)-matrices.
The estimate for the channel coefficients h0 is given by the following normal-

ized stochastic approximation algorithm:

h̃k+1 = hk − ak�
τ
k+1�k+1hk, (4)

hk+1 = h̃k+1/

∥∥∥h̃k+1

∥∥∥ , (5)

where ak is the stepsize.
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From (4)(5) it is seen that �k is changed to �k+1 after receiving a new obser-
vation yk+1, and this yields the update of the estimate from hk to hk+1. In contrast
to the algorithm used in [5], here the variance of {ξk} is not used and the algorithm
in normalized and hence is nonlinear. The aim of the paper is to show that hk

converges to the channel coefficient h0 up-to scaling factor.

3. Auxiliary Lemmas

We first list conditions to be used in the paper.

A1) The input {sk} is a φ-mixing sequence, i.e. there exist a constant M � 0 and a
function φ(m) →

m→∞ 0 such that for any n � 1

sup
V ∈F n

1 ,U∈F ∞
n+m

|P(U |V ) − P(U)| � φ(m), ∀m � M,

where F
j

i = σ {sk, i � k � j};
A2) There exists a distribution function F0(·) over R2L+1 such that∣∣∣∣∣ sup

S∈B2L+1

P {(sk−2L, · · · sk) ∈ S} −
∫

S

dF0(w)

∣∣∣∣∣ →
k→∞

0,

where B2L+1 denotes the Borel σ -algebra in R2L+1 and w=(w1,· · ·, w2L+1)
τ ;

A3) The (2L + 1) × (2L + 1)-matrix Q = (qij ) with qij = ∫
R2L+1 wiwjdF0(w) is

nondegenerate;

A4) The signal {sk} is independent of {ξk} and supk |sk(ω)| � ζ(ω) < ∞, where
ζ(ω) is a random variable with

Eζ 2+γ < +∞
for some γ > 0;

A5) All components {ξ (i)
k , i = 1, · · · , p, k = 1, 2, · · · } of {ξk} are mutually inde-

pendent with E{ξk} = 0, E{(ξ (i)
k )3} = 0, E{(ξ (i)

k )2} = c > 0, and E{((ξ (i)
k )2−

c)2} > 0, ∀i, k, and {ξ (i)
k } is bounded by a constant, i.e. supk ‖ξk(ω)‖ < ξ <

∞, where ξ is a constant;

A6) The polynomials {h(i)(z)} characterizing subchannels do not share common
zeros, where

h(i)(z) = h
(i)
0 + h

(i)
1 z + · · · + h

(i)
L zL, i = 1, · · · , p; (6)

A7) ak > 0,
∑

k ak = +∞,
∑

k a2
k < ∞ and ak+1/ak = 1 + O(ak).
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We note that Conditions A1)-A4) are imposed on the input signal. By these
conditions the input is allowed to be a φ−mixing sequence of not equally dis-
tributed random variables having a (2L + 1)-dimensional joint limit distribution
with nondegenerate covariance matrix. The input is also assumed to be bounded
by a random variable. Condition A5) is on the observation noise, requiring it be
bounded by a constant among other requirements. Conditions A6), A7) are quite
standard, but a rate for ak is required when it tends to zero.

In the sequel, In×n denotes the n-dimensional identity matrix.

LEMMA 1. If A2), A3) hold, then

E{�τ
k�k} →

k→∞ Hτ(Ip(p−1)
2 × p(p−1)

2
) ⊗ Q)H

�= C,

where C is a p(L + 1) × p(L + 1)-matrix, Q is given in A3), ⊗ denotes the
Kronecker product and H = (H0, · · · ,HL) with

H =




H
(2)
t −H

(1)
t 0 0 0

H
(3)
t 0 −H

(1)
t 0 0

...
...

...
. . .

...

H
(p)
t 0 0 0 −H

(1)
t

0 H
(3)
t −H

(2)
t 0 0

...
...

...
. . .

...

0 H
(p)
t 0 0 −H

(2)
t

· · · · · · · · · · · · · · ·
...

...
...

...
...

· · · · · · · · · · · · · · ·
0 0 0 H

(p)
t −H

(p−1)
t




and H
(i)
t = (0, · · · , 0︸ ︷︷ ︸

t

, h
(i)

0 , · · · , h
(i)
L , 0, · · · , 0︸ ︷︷ ︸

L−t

)τ .

Proof. By the definition of �k, we have

�k = (I p(p−1)
2 × p(p−1)

2
) ⊗ (sk, · · · , sk−2L))H. (7)

Since

((I p(p−1)
2 × p(p−1)

2
) ⊗ (sk, · · · , sk−2L))τ ((I p(p−1)

2 × p(p−1)
2

) ⊗ (sk, · · · , sk−2L))

= (I p(p−1)
2 × p(p−1)

2
) ⊗ ((sk, · · · , sk−2L)τ (sk, · · · , sk−2L)),

and E{(sk, · · · , sk−2L)τ (sk, · · · , sk−2L)} →
k→∞ Q by A2), the lemma immediately

follows. �
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We now show that h0 is the unique eigenvector of C corresponding to the zero
eigenvalue.

LEMMA 2. Under A2)–A3) and A6), h0 is the unique (up-to a constant multiple)
non-zero vector satisfying the following equations:

�kh0 = 0, ∀k = 2L + 1, · · · ,

and

Ch0 = 0.

Proof. By the definition of �k the equations listed in the lemma are satisfied by
h0. The only thing remains to prove is the uniqueness. Let ĥ be another solution
of these linear equations. Then from that Cĥ = 0 and C = [Hτ(Ip(p−1)

2 × p(p−1)
2

) ⊗
Q1/2][Hτ(Ip(p−1)

2 × p(p−1)
2

) ⊗ Q1/2]τ it follows that

(I p(p−1)
2 × p(p−1)

2
) ⊗ Q1/2)H ĥ = 0.

Since (I p(p−1)
2 × p(p−1)

2
) ⊗ Q1/2 is nondegenerate, we have H ĥ = 0. Then by A6)

along with lines of [17] (See from (14) of [17] to the end of the proof for Theorem
1 of [17]) it is shown that ĥ is identical to h0 up-to a constant multiple. �
LEMMA 3. Under Condition A4)

D
�= E{�τ

k�k} = (p − 1)cIp(L+1)×p(L+1).

Proof. By the definition of �k, it is seen that

�τ
k�k =


 Nτ

k Nk · · · Nτ
k Nk−L

...
. . .

...

Nτ
k−LNk · · · Nτ

k−LNk−L


 .

By A4) it follows that E{Nτ
n Nn} = (p − 1)cIp×p , and E{Nτ

mNn} = 0 for m �= n.
Then the lemma follows immediately. �

We need a fact from stochastic approximation and formulate it as a lemma. For
its proof we refer to [2].

LEMMA 4. Let {Fk} be a family of nondecreasing σ -algebras and {εk,Fk} be
martingale difference sequence with

E{‖εk+1‖2|Fk} < ∞, E{εk+1|Fk} = 0.
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Let {�k,Fk} be an adapted random sequence and {ck} be a real sequence with
ck > 0,

∑
k ck = +∞ and

∑ |ck|2 < ∞. Suppose that on � ⊂ �, the following
conditions 1,2 and 3 hold.

1. lim sup
k→∞

E{‖εk+1‖2 |Fk} < ∞ lim inf
k→∞ E{‖εk+1‖ |Fk} > 0; (8)

2. �k can be decomposed into two adapted sequences {rk,Fk} and {Rk,Fk}
such that �k = rk + Rk and

∑
k

‖rk‖2 < ∞ and E{I�

∞∑
k=n

‖ckRk‖} = o

( ∞∑
k=n

|ck|2
)1/2

as n → ∞.

(9)

3.
∑∞

k=n ck(�k + εk) coincides with an Fn-measurable random variable for
some n.

Then P {�} = 0.

The following lemma shows a general property for a φ−mixing sequence.

LEMMA 5. Let g(·) be a measurable function such that ‖g(sk)‖ � a ‖sk‖2 where
a is a constant. If Conditions A1), A2), A3) and the condition on sk in A5) are
satisfied, then∥∥∥E{g(sk)|F k−j

1 } − E{g(sk)}
∥∥∥ � χ(ω) (φ(k − L − j))

γ
2+γ ,

where χ(ω) < ∞.

Proof. According to the notation introduced in A1) F n
1 = σ {sk, k = 1, · · · , n}.

Denote by Fk(z,F
k−j

1 ) the conditional distribution function of sk given F k−j

1 ,

where k −L > j, and by Fk(z) the distribution function of sk. Then by the Jordan-
Hahn decomposition for the signed measure

dGk,j (z, ω)
�= dFk(z,F

k−j

1 ) − dFk(z),

there is a Borel set U ∈ R2L+1 such that for any Borel set V ∈ R2L+1∫
V

dG+
k,j (z,w) =

∫
V∩Uc

dGk,j (z,w) � φ(k − L − j),∫
V

dG−
k,j (z,w) =

∫
V∩U

dGk,j (z,w) � φ(k − L − j)

and

dGk,j (z, ω) = dG+
k,j (z, ω) − dG−

k,j (z, ω).
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Therefore, by the Hölder inequality

∥∥∥E{g(sk)|F k−j

1 }−E{g(sk)}
∥∥∥=

∥∥∥∥
∫ ∞

−∞
g(z)dFk(z,F

k−j

1 )−
∫ ∞

−∞
g(z)dFk(z)

∥∥∥∥
�

∥∥∥∥
∫ ∞

−∞
‖g(z)‖ (dG+

k,j (z, ω) + dG−
k,j (z, ω))

∥∥∥∥
�

((∫ ∞

−∞
‖g(z)‖1+ γ

2 dG+
k,j (z, ω)

) 2
2+γ

+
(∫ ∞

−∞
‖g(z)‖1+ γ

2 dG−
k,j (z, ω)

) 2
2+γ

)
φ

γ
2+γ (k − L − j).

Since supk |sk(ω)| � ζ(ω) < ∞ and Eζ 2+γ < ∞, the integrals in the last expres-
sion are finite a.s. Denoting the sum of two integrals by χ(ω) leads to the desired
result. �

4. Main Results

We now in a position to formulate and prove the main results for the algorithm
defined by (4) (5).

THEOREM 1. Under A1)–A7), for any given initial h0 the distance between hk

and J converges to zero, i.e.

d(hk, J ) →
k→∞

0,

where J is the set of unit eigenvectors of the matrix C defined in Lemma 1.
Proof. To prove the theorem, by Theorem 2 in [19] or Theorem 5.2.1 in [20],

we need only to prove that for any t ∈ [0, T ]

lim
T →0

lim sup
n→∞

1

T

∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − B)

∥∥∥∥∥ = 0 a.s., (10)

where B = C + D and m(n, t) = max{k : ∑k
i=n ai � t}. This is because any

eigenvector of B is also an eigenvector of C.
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By (3) we have∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − B)

∥∥∥∥∥
�

∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − C)

∥∥∥∥∥ +
∥∥∥∥∥

m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − E{�τ

k+1�k+1})
∥∥∥∥∥

+
∥∥∥∥∥

m(n,t)∑
k=n

ak(�
τ
k+1�k+1 + �τ

k+1�k+1)

∥∥∥∥∥ . (11)

By A4), A7) and the convergence theorem of martingale difference sequence it is
seen that the last two terms in (11) are of o(T ) as T → 0. Therefore, it remains to
prove that

lim sup
n→∞

∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − C)

∥∥∥∥∥ = o(T ).

Note that∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − C)

∥∥∥∥∥
�

∥∥∥∥∥
m(n,t)∑
k=n

ak(�
τ
k+1�k+1 − E{�τ

k+1�k+1|F k−j

1 })
∥∥∥∥∥

+
∥∥∥∥∥

m(n,t)∑
k=n

ak(E{�τ
k+1�k+1|F k−j

1 } − C)

∥∥∥∥∥ , (12)

and for any j > 0, {�τ
k+1�k+1−E{�τ

k+1�k+1|F k−j

1 }} is a sum of j martingale dif-
ference sequences. By the convergent theorem for martingale difference sequence,
from A5) and A7), it follows that for any j > 0,

∞∑
k=L

ak(�
τ
k+1�k+1 − E{�τ

k+1�k+1|F k−j

1 }) < ∞. a.s.

The second term of the right hand side of (12) is less than the sum of the following
two terms∥∥∥∥∥

m(n,t)∑
k=n

ak(E{�τ
k+1�k+1|F k−j

1 } − E{�τ
k+1�k+1})

∥∥∥∥∥
+

∥∥∥∥∥
m(n,t)∑
k=n

ak(E{�τ
k+1�k+1} − C)

∥∥∥∥∥ .
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By Lemma 5 the first term is less than χ̃ (ω)T φ
γ

2+γ (n − L − j), where χ̃(ω) < ∞,
while the second term is o(T ) by Lemma 1. Combining all of these leads to the
desired result. �
By Lemma 2 zero is an eigenvalue of C with multiplicity one and the corresponding
eigenvector is h0, h0/

∥∥h0
∥∥ ∈ J . Theorem 1 guarantees that estimate hk approaches

to J, but it is not clear if hk tends to the direction of h0. Let 0 = λ1 < λ2 <

· · · < λm, m � p(L + 1) be all different eigenvalues of C. J is composed of
disconnected sets Js = {h ∈ Rp, ‖h‖ = 1 and Ch = λsh}, s = 1, · · · ,m, where
J1 = {h0/‖h0‖,−h0/‖h0‖}. Note that the limit points of hk are in a connected set,
so hk converges to a Js for some s. Let �s = {ω, d(hk(ω), Js) →

k→∞ 0}. We want to

prove that d(hk, J1) →
k→∞

0 a.s. or P {�1} = 1.

THEOREM 2. Assume A1)-A7) hold. Then hk defined by (4) (5) a.s. converges to
h0 up-to a constant multiple:

hk → αh0,

where α equals either
∥∥h0

∥∥−1
or − ∥∥h0

∥∥−1
.

Proof. Assume the contrary, that P {�s} > 0 for some s > 1, λs > 0. Since C

is a symmetric matrix, h0τhk → 0 for ω ∈ �s, where and hereafter a possible set
with zero probability in �s is ignored.

Expanding hk+1 defined by (5) to the Taylor’s series with respect to ak, we
derive

hk+1 = hk − ak(Bhk − (hτ
k�

τ
k+1�k+1hk)hk + µk+1 + βk+1), (13)

where

µk+1 = (�τ
k+1�k+1 − B)hk, (14)

βk+1 = O(ak). (15)

Defining θk = h0τhk and noting h0τC = 0 and h0τ�k+1 = 0, we derive

θk+1 = θk + ak((hτ
k�

τ
k+1�k+1hk − (p − 1)c)θk − h0τµk+1 − h0τβk+1), (16)

and

h0τµk+1 = h0τ (�τ
k+1�k+1 − B)hk

= h0τ (�τ
k+1�k+1 + �τ

k+1�
τ
k+1)hk − (p − 1)cθk

=
(

L∑
i=0

hτ
i N

τ
k+1−i

)(
L∑

i=0

Nk+1−ihk,i

)

+
(

L∑
i=0

hτ
i N

τ
k+1−i

)(
L∑

i=0

Xk+1−ihk,i

)
− (p − 1)cθk.
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By A4) and A5), there exists α(ω) < ∞ a.s. such that ‖�τ
k+1�k+1 − D‖ < α(ω)

a.s. For any integers m and n define �m = {ω, α(ω) < m} ∩ �s and

Bn =
n∏

k=n0

{1 + ak(hτ
k(�

τ
k+1�k+1 − D)hk)}. (17)

Note that for ω ∈ �m,

hτ
kChk → λs > 0,

and by the convergence of hk from (13) it follows that ‖hj − hk‖ < c0T , ∀j : k �
j � m(k, T ) where c0 is a constant for all ω in �m. By (10) we then have∣∣∣∣∣∣

m(j,T )∑
k=j

ak(hτ
k (�

τ
k+1�k+1 − B)hk)

∣∣∣∣∣∣
�

∥∥∥∥∥∥
m(j,T )∑
k=j

ak(�
τ
k+1�k+1 − B)

∥∥∥∥∥∥ + 2c0T m

m(j,T )∑
k=j

ak = o(T ).

Choose large enough n0 and sufficiently small T such that o(T )/T < λs/4, ∀j �
n0. Let k0 = n0, k1 = m(n0, T ) + 1, k2 = m(k1, T ) + 1, · · · , kj+1 = m(kj , T ) +
1, · · · , and m(kl, T ) � n � m(kl+1, T ). It then follows that for ω ∈ �m

ln Bn = ln




n∏
k=n0

{1 + ak(hτ
k(�

τ
k+1�k+1 − D)hk}




=
n∑

k=n0

ak(hτ
k(�

τ
k+1�k+1 − D)hk) + O


 n∑

k=n0

a2
k




=
n∑

k=n0

hτ
kChkak+

n∑
k=n0

ak(hτ
k (�

τ
k+1�k+1 − B)hk)+ O


 n∑

k=n0

a2
k




�
l∑

j=0

m(kj ,T )∑
k=kj

λs

2
ak >

λs

3

n∑
k=n0

ak

(18)

for n0 sufficiently large.
Consequently, for ω ∈ �m with fixed m

Bn � e
λs
3

∑n
k=n0

ak (19)

and hence

Bn/


 n∑

k=n0

ak


2

→ ∞. (20)



260 H.-T. FANG AND H.-F. CHEN

Define

�l =

ω,Bn >

(
n∑

k=1

ak

)2

,∀n � l


 .

From (16) it follows that

θn = Bn−1(θn0 −
n−1∑
j=n0

B−1
j aj (h0τµj+1 + h0τβj+1)). (21)

Tending n → ∞ in (21) and replacing n0 by n in the resulting equality, by (19) we
have

θn =
∞∑

j=n

B−1
j aj (h0τµj+1 + h0τβj+1), ∀n, ω ∈ �m ∩ �l. (22)

Let Fk = σ {ξl, l = 0, · · · , k, sl , l = 0, · · · , k + 2L + 1}. We intend to show that
θn given by (22) can be expressed in the form of condition 3 in Lemma 4. If this
can be done, then noticing that by (21) θn is Fn-measurable, by Lemma 4 it follows
that P {⋃m,l(�m∩�l)} = 0 or P {�s} = 0, ∀s > 1 and the theorem will be proved.

We first show that the series

Sn
�=

∞∑
k=n

ak(h0τµk+1 + h0τβk+1) (23)

is convergent on �s . By (15) and A7) it suffices to show
∑∞

k=n ak/µk+1 is conver-
gent on �s .

Define

ε
(1)
k+1 =

L∑
i=0

(hτ
i N

τ
k+1)(Nk+1hk,i) − (p − 1)cθk, (24)

ε
(2)

k+1 =
L−1∑
i=0

[
(hτ

i N
τ
k+1)

(
L∑

l=i+1

Nk+i+1−lhk,l

)

+
(

L−1∑
l=i+1

hτ
l N

τ
k+i+1−l

)
(Nk+1hk,i)

]
, (25)

ε
(3)

k+1 =
L−1∑
i=0

[
(hτ

i N
τ
k+1)

(
L∑

l=0

Nk+i+1−lhk,l

)]
, (26)

and

δk+1 =
3∑

i=1

ε
(i)
k+1. (27)
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Clearly, δk, is measurable with respect to Fk and E{δk+1|Fk} = 0. Then by the
convergence theorem for martingale difference sequences

∞∑
k=m

akδk+1 < ∞. (28)

By (2), (3) and (14) it follows that
∞∑

k=n

ak[h0τµk+1 + (p − 1)cθk]

=
∞∑

k=n

ak

[
L∑

i=0

(hτ
i N

τ
k+1−i)

(
L∑

s=0

Nk+1−shk,s

)

+
(

L∑
i=0

hτ
i N

τ
k+1−i

)(
L∑

s=0

Xk+1−shk,s

)]

=
L∑

i=0

∞∑
k=n

[
akh

τ
i N

τ
k+1−i

(
L∑

s=0

Nk+1−shk,s

)

+akh
τ
i N

τ
k+1−i

(
L∑

s=0

Xk+1−shk,s

)]

=
L∑

i=0

∞∑
l=n−i

[
al+ih

τ
i N

τ
l+1

(
L∑

s=0

Nl+i+1−shl+i,s

)

+al+ih
τ
i N

τ
l+1

(
L∑

s=0

Xl+i+1−shl+i,s

)]
.

(29)

The first term on the right-hand side of the last equality of (29) can be expressed in
the following form:

L∑
i=0

∞∑
l=n−i

al+i (h
τ
i N

τ
l+1)(Nl+1hl+i,i )

+
L−1∑
i=0

∞∑
l=n−i

al+i (h
τ
i N

τ
l+1)

(
L∑

s=i+1

Nl+i+1−shl+i,s

)

+
L∑

i=1

∞∑
l=n−i

al+i (h
τ
i N

τ
l+1)

(
i−1∑
s=0

Nl+i+1−shl+i,s

)
,

(30)

where the last term equals
L−1∑
s=0

L−1∑
i=s+1

∞∑
l=n−i

al+i(h
τ
i N

τ
l+1)(Nl+1+i−shl+i,s)

=
L−1∑
s=0

L−1∑
i=s+1

∞∑
m=n−s

am+s(h
τ
i N

τ
m−i+s+1)(Nm+1hm+s,s).

(31)
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Combining (30) and (31) we derive that the first term on the right-hand side of the
last equality of (29) is

L∑
i=0

∞∑
l=n−i

al+i (h
τ
i N

τ
l+1)(Nl+1hl+i,i )

+
L−1∑
i=0

∞∑
l=n−i

L−1∑
s=i+1

al+i[(hτ
i N

τ
l+1)(Nl+i+1−shl+i,s) + (hτ

s N
τ
l+i+1−s)(Nl+1hl+i,i )].

(32)

By A4), A5) and A7) it is clear that ‖hk+l − hk‖ = O(ak), ∀l, 0 � l � L. Hence
replacing hl+i by hl in (29) results in producing an additional term of magnitude
O(aj ). Thus, by (24)–(26) we can rewrite (29) as

∞∑
k=n

akh0τµk+1 =
∞∑

k=n

ak

(
3∑

i=1

ε
(i)

k+1 + νk+1

)
=

∞∑
k=n

ak(δk+1 + νk+1), (33)

where νk+1 = O(ak+1) and is Fk+1-measurable. By (28) and A7) the series (33) is
convergent, and hence Sn given by (23) is a convergent series.

Let Bn−1 = I . We now have

θn =
∞∑

k=n

B−1
k (Sk − Sk+1) =

∞∑
k=n

(B−1
k − B−1

k−1)Sk + Sn0

=
∞∑

k=n

[
(B−1

k − B−1
k−1)Sk + ak(h0τµk+1 + h0τβk+1)

]

=
∞∑

j=0


(j+1)(L+1)+n−1∑

l=j (L+1)+n

R1
l +aj(L+1)+n

(j+1)(L+1)+n−1∑
l=j (L+1)+n

(δl+1+ν̃l+1+h0τβl+1)


 ,

where R1
j = (B−1

j − B−1
j−1)Sj ,

ν̃l+1 =
(

al

aj (L+1)+n

− 1

)
(δl+1 + νl+1 + h0τβl+1) + νl+1

= O(aj(L+1)+n), ∀l : j (L + 1) + n � l < (j + 1)(L + 1) + n.

Denote

Rj = 1

cj

(j+1)(L+1)+n−1∑
l=j (L+1)+n

R1
l , rj =

(j+1)(L+1)+n−1∑
l=j (L+1)+n

(ν̃l+1 + h0τβl+1),

εj =
(j+1)(L+1)+n−1∑

l=j (L+1)+n

δl+1, cj = aj(L+1)+n and F ′
j

�=F(j+1)(L+1)+n.
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Then {Rj,F
′

j }, {rj ,F
′

j } are adapted sequences and {εj ,F
′
j } is a martingale

difference sequence, and θn is written in the form of Lemma 4: θn = ∑∞
j=n cj (Rj +

rj + εj ).

It remains to verify (8) and (9).
From (23) and (33) it follows that there is a constant η > 0 such that E{|Sn|2} �

η
∑∞

k=n a2
k . Then for n > l noticing

|B−1
j − B−1

j−1| � B−1
j aj |(hτ

j�
τ
j+1�j+1hj ) − (p − 1)c|,

and
∞∑

j=n

(
E

{
I�m∩�l

|B−1
j − B−1

j−1|2
})1/2

�
∞∑

j=n

(
E

{
1�m∩�l

B−2
j a2

j (m)2
})1/2

� m

∞∑
j=n

aj(∑j

k=1 ak

)2 �
∫ ∞
∑n−1

k=1 ak

1

x2
dx<∞,

we have

E


I�m∩�l

∞∑
j=n

|cjRj |

 � E

{
I�m∩�l

∞∑
k=n

|R1
k |
}

= E

{
I�m∩�l

∞∑
k=n

|B−1
k − B−1

k−1||Sk|
}

�
∞∑

k=n

(
E{I�m∩�l

|B−1
k − B−1

k−1|2}E{I�m∩�l
|Sk|2}

)1/2

� o

( ∞∑
k=n

a2
k

)1/2

= o


 ∞∑

j=n

c2
j


1/2

as n → ∞.

By A4) and A5) it follows that

lim sup
k→∞

E
{
δ

2+γ

k+1 |Fk

}
< ∞ for some γ > 0. (34)

It is proved in Lemma 6 in the Appendix that

lim inf
k→∞ E




∣∣∣∣∣
k+L∑
l=k

δl+1

∣∣∣∣∣
2

|Fk


 > 0,

which implies that

lim inf
k→∞ E

{|εk+1|2|F ′
k

} = lim inf
k→∞ E




∣∣∣∣∣∣
(k+2)(L+1)+n∑

l=(k+1)(L+1)+n

δl+1

∣∣∣∣∣∣
2

|F(k+1)(L+1)+n


 > 0.

(35)
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Then from the following inequality

E{|εk+1|2|F ′
k } < E{|εk+1|2+γ |F ′

k }
1

1+γ E{|εk+1||F ′
k }

γ
1+γ

by (34)(35) it follows that

lim inf
k→∞

E|εk+1||F ′
k } > 0.

Therefore all conditions required in Lemma 4 are met, and we conclude P {�m ∩
�l} = 0. Since �s = ⋃

m,l

�m ∩ �l , it follows that P {�s} = 0, and hk must converge

to αh0, a.s. �

5. Conclusion Remarks

In this paper we have presented a recursive algorithm for channel identification.
The algorithm is featured by the following points: 1) The algorithm is on-line
updated needless to collect entire data in advance; 2) No noise statistics are used
in the algorithm; 3) The input signal is allowed to be dependent; 4) The estimate
is proved to converge a.s. to the true channel coefficients up-to a constant scaling
factor.

For further study it is of interest to consider the case where the input signal is
also multidimensional. It is also of interest to weaken conditions imposed on the
input and on the observation noise.

Appendix

LEMMA 6. Under Conditions A4), A5)

lim inf
n→∞ E




∣∣∣∣∣
k+L∑
l=k

δl+1

∣∣∣∣∣
2

|Fk


 > 0,

where δk is given by (27) and Fk = σ {ξl, l = 0, · · · , k, sl, l = 0, · · · , k +2L+1}.
Proof. If the lemma were not true, then there would exist a subsequence {kn}

such that

E




∣∣∣∣∣∣
kn+L∑
l=kn

δl+1

∣∣∣∣∣∣
2

|Fkn


 →

n→∞0. (36)

For notational simplicity, let us denote the subsequence kn still by k.
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Since by A5) E{ε(s)
j+1ε

(t)
i+1|Fk} = 0 for j , i � k if s �= t , and for any j , i � k

but j �= i if s = t, we then have

E




∣∣∣∣∣
k+L∑
l=k

δl+1

∣∣∣∣∣
2

|Fk


=

k+L∑
l=k

[
E{(ε(1)

l+1)
2|Fk}+E{(ε(2)

l+1)
2|Fk}+E{(ε(3)

l+1)
2|Fk}

]

which incorporating with (36) implies that

E

{(
ε

(1)

k+1

)2 |Fk

}
→

k→∞0, (37)

and

E

{(
ε

(2)

k+L+1

)2 |Fk

}
→

k→∞0. (38)

Noticing that θk →
k→∞0 and |hj−L,i −hj,i| = O(aj ), from (37) and (24) it follows

that

E




(
L∑

i=0

(hτ
i N

τ
k+1)(Nk+1hk,i)

)2

|Fk


 →

k→∞
0.

On the other hand, we have

L∑
i=0

(hτ
i N

τ
k+1)(Nk+1hk,i) =

L∑
i=0

p∑
n=1

p∑
m=n+1

(
h

(n)
i ξ

(m)
k+1 − h

(m)
i ξ

(n)
k+1

)
×

(
h

(n)
k,i ξ

(m)
k+1 − h

(m)
k,i ξ

(n)
k+1

)
=

L∑
i=0

p∑
n=1

p∑
m=1
m�=n

(
h

(n)
i h

(n)
k,i ξ

(m)

k+1ξ
(m)

k+1

−h
(m)
i h

(n)
k,i ξ

(n)
k+1ξ

(m)
k+1

)
,

and hence,

E





 L∑

i=0

p∑
m=1

p∑
n=1
n�=m

(
h

(n)
i h

(n)
k,i ξ

(m)
k+1ξ

(m)
k+1 − h

(m)
i h

(n)
k,i ξ

(n)
k+1ξ

(m)
k+1

)
2

|Fk


 →

k→∞
0.

(39)

Since for any s �= t,

E
{(

h
(n)
i h

(n)
j,i ξ

(m)

j+1ξ
(m)

j+1

)(
h

(t)
i h

(s)
j,iξ

(s)

j+1ξ
(t)

j+1

)
|Fj

}
= 0,
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we have

E





 p∑

m=1

p∑
n=1
n�=m

((
L∑

i=0

h
(n)
i h

(n)
k,i

)
ξ

(m)

k+1ξ
(m)

k+1 −
(

L∑
i=0

h
(m)
i h

(n)
k,i

)
ξ

(n)

k+1ξ
(m)

k+1

)


2

|Fk




= E





 p∑

m=1

p∑
n=1
n�=m

(
L∑

i=0

h
(n)
i h

(n)
k,i

)
ξ

(m)

k+1ξ
(m)

k+1




2

|Fk




+E





 p∑

m=1

p∑
n=1
n�=m

(
L∑

i=0

h
(m)
i h

(n)
k,i

)
ξ

(n)
k+1ξ

(m)
k+1




2

|Fk


 .

Hence (39) implies that

E





 p∑

m=1

p∑
n=1
n�=m

(
L∑

i=0

h
(n)
i h

(n)
k,i

)(
ξ

(m)
k+1

)2




2

|Fk


 , →

k→∞0. (40)

and

E





 p∑

m=1

p∑
n=1
n�=m

(
L∑

i=0

h
(m)
i h

(n)
k,i

)(
ξ

(n)
k+1ξ

(m)
k+1

)
2

|Fk


 →

k→∞
0. (41)

By A4) the left hand side of (40) equals

E




[
p∑

m=1

(
p∑

n=1

L∑
i=0

h
(n)
i h

(n)
k,i −

L∑
i=0

h
(m)
i h

(m)
k,i

)(
ξ

(m)
k+1

)2
]2

|Fk




= E




[
p∑

m=1

(
θk −

L∑
i=0

h
(m)
i h

(m)
k,i

)(
ξ

(m)

k+1

)2
]2

|Fk




=
p∑

m=1

(
θk −

L∑
i=0

h
(m)
i h

(m)
k,i

)2

E

{((
ξ

(m)
k+1

)2 − c

)2
}

+c2

(
p∑

m=1

(
θk −

L∑
i=0

h
(m)
i h

(m)
k,i

))2

=
p∑

m=1

(
θk −

L∑
i=0

h
(m)
i h

(m)
k,i

)2

E

{((
ξ

(m)

k+1

)2 − c

)2
}

+ (p − 1)2c2θ2
k .
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Since θk → 0, it follows that for any m,
L∑

i=0

h
(m)
i h

(m)
k,i →

k→∞0. (42)

The left side of (41) equals

E




p∑
m=1

p∑
n=1
n�=m

(
L∑

i=0

(
h

(m)
i h

(n)
k,i + h

(n)
i h

(m)
k,i

))2 (
ξ

(n)
k+1ξ

(m)
k+1

)2 |Fk




= c2
p∑

m=1

m−1∑
n=1

(
L∑

i=0

h
(m)
i h

(n)
k,i + h

(n)
i h

(m)
k,i

)2

.

Thus (41) implies that for any m �= n,
L∑

i=0

(
h

(m)
i h

(n)
k,i + h

(n)
i h

(m)
k,i

)
→

k→∞0. (43)

Noticing |hk+i − hk| = O(ak) ∀i = 1, · · · , L from (25) we have

ε
(2)
k+L+1 =

L−1∑
i=0

L−i−1∑
l=0

[(
hτ

i N
τ
k+L+1

) (
Nk+L−lhk,l+i+1

)
+ (

hτ
l+i+1N

τ
k+L−l

) (
Nk+1hk,i

)]
=

L−1∑
l=0

L−l−1∑
i=0

[(
hτ

i N
τ
k+L+1

) (
Nk+L−lhk,l+i+1

)
+ (

hτ
l+i+1N

τ
k+L−l

) (
Nk+L+1hk,i

)] + O(ak).

Then by A5) (38) implies that for any l

E

{[ L−l−1∑
i=0

[(
hτ

i N
τ
k+L+1

) (
Nk+L−lhk,l+i+1

)
+ (

hτ
l+i+1N

τ
k+L−l

) (
Nk+L+1hk,i

)] ]|Fk

}
→

k→∞
0.

(44)

Notice that(
hτ

i N
τ
k+L+1

) (
Nk+L−lhk,l+i+1

)
=

p∑
m=1

m−1∑
n=1

(
h

(n)
i ξ

(m)
k+L+1−h

(m)
i ξ

(n)
k+L+1

)(
h

(n)
k,l+i+1ξ

(m)
k+L−l−h

(m)
k,l+i+1ξ

(n)
k+L−l

)

=
p∑

m=1

p∑
n=1
n�=m

(
h

(n)
i h

(n)

k,l+i+1ξ
(m)

k+L+1ξ
(m)
k+L−l − h

(n)
i h

(m)

k,l+i−1ξ
(m)

k+L+1ξ
(n)
k+L−l

)
, (45)
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and

(
hτ

l+i+1N
τ
k+L−l

) (
Nk+L+1hk,i

) =
p∑

m=1

p∑
n=1
n�=m

(
h

(n)

l+i+1h
(n)
k,i ξ

(m)

k+1ξ
(m)
k+L−l

−h
(m)

l+i+1h
(n)
k,i ξ

(m)

k+L+1ξ
(n)
k+L−l

)
.

(46)

Then by A5), from (44)–(46) it follows that

E




[
L−l−1∑

i=0

[(
hτ

i N
τ
k+L+1

) (
Nk+L−lhk,l

) + (
hτ

l+i+1N
τ
k+L−l

) (
Nk+L+1hk,i

)]]2



= c2
p∑

m=1




L−l−1∑

i=0

p∑
n=1
n�=m

(
h

(n)
i h

(n)
k,l+i+1 + h

(n)
l+i+1h

(n)
k,i

)
2

+
p∑

n=1
n�=m

(
L−l−1∑

i=0

(
h

(m)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(m)
k,i

))2

 →

k→∞0,

and hence for any l = 0, · · · , L − 1

L−l−1∑
i=0

(
h

(m)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(m)
k,i

)
→

k→∞0 (47)

and

L−l−1∑
i=0

p∑
n=1
n�=m

(
h

(n)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(n)
k,i

)
→

k→∞0. (48)

Notice that (48) means that

p

p∑
n=1

L−l−1∑
i=0

(
h

(n)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(n)
k,i

)

−
p∑

m=1

L−l−1∑
i=0

(
h

(m)
i h

(m)
k,l+i+1 + h

(m)
l+i+1h

(m)
k,i

)
→

k→∞
0.

However, the above expression equals

(p − 1)

p∑
n=1

L−l−1∑
i=0

(
h

(n)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(n)
k,i

)
.
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Therefore
L−l−1∑

i=0

(
h

(n)
i h

(n)

k,l+i+1 + h
(n)

l+i+1h
(n)
k,i

)
→

k→∞0. (49)

In the sequel, it will be shown that (42), (43), (47) and (49) imply that hk →
k→∞

0,

which contracts with ‖hk‖ = 1. This means that the converse assumption (36) is
not true.

For any m �= n, since h(n)(z), h(m)(z) are coprime, where h(n)(z) is given in (6),
there exist polynomials d1(z), d2(z) such that

d1(z)h
(n)(z) + d2(z)h

(m)(z) = 1. (50)

Let r1 and r2 be the degrees of d1(z) and d2(z), respectively. Set q = 4(r1 + r2) +
5L + 1. Introduce the q-dimensional vector gs

k and q × q square matrices T and A

as follows

gs
k = (0, · · · , 0︸ ︷︷ ︸

2(r1+r2+L)

, h
(s)

k,0, · · · , h
(s)
k,L, 0, · · · , 0︸ ︷︷ ︸

2(r1+r2+L)

)τ ,

T =




0 · · · 0 1
... � 0

0 �
...

1 0 · · · 0


 , A =




0 · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
...

0 0 1 0


 .

Notes that Tg= (gq, · · · , g1)
τ , where g = (g1, · · · , gq)

τ and Ag = (0, g1, · · · ,

gq−1)
τ , Aτg = (g2, · · · , gq, 0)τ . Then (42), (43), (47) and (49) can be written in

the following compact form:

h(s)(A)T gt
k + h(t)(Aτ )ALgt

k →
k→∞0, ∀s, t = 1, · · · p. (51)

To see this, note that for any fixed s and t , on the left hand sides of (47) and (49)
there are 2L different sums when l varies from 0 to L−1 and s, t replace roles each
other. These together with (42) and (43) give us 2L + 1 sums, and each of them
tends to zero. Explicitly expressing (51), we find that there are 2L + 1 nonzero
rows and each row corresponds to one of the relationships in (42), (43), (47) and
(49).

Since we have put enough zeros in the definition of gs
k , multiplying the left hand

side of (51) by Ai,∀i � r1 + r2, Ai(h(s)(A)T gt
k + h(t)(Aτ )ALgs

k) has only shifted
nonzero elements in h(s)(A)T gt

k + h(t)(Aτ )ALgs
k .

From (51) it follows that for any l : l = 1, · · · , p, and m,n in (50)

(d1(A)(h(n)(A)T gl
k + h(l)(Aτ )ALgn

k ) + d2(A)(h(m)(A)T gl
k + h(l)(Aτ )ALgm

k )

= d1(A)h(n)(A) + d2(A)h(m)(A))T gl
k + h(l)(Aτ )AL(d1(A)gn

k + d2(A)gm
k )

= T gl
k + h(l)(Aτ )AL(d1(A)gn

k + d2(A)gm
k ) →

k→∞0. (52)
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From (52) it follows that

d1(A
τ )[T gn

k + h(n)(Aτ )AL(d1(A)gn
k + d2(A)gm

k )]
+d2(A

τ )[T gm
k + h(m)(Aτ )AL(d1(A)gn

k + d2(A)gm
k )] →

k→∞
0. (53)

Note that for any polynomial g(z) of degree r, d(Aτ )T y = T d(A)y, if the last r

elements of y are zeros. From (53) it follows that

d1(A
τ )T gn

k + d2(A
τ )T gm

k + (d1(A
τ )h(n)(Aτ )

+d2(A
τ )h(m)(A))zL(d1(A)gn

k + d2(A)gm
k )

= T (d1(A)gn
k + d2(A)gm

k ) + AL(d1(A)gn
k + d2(A)gm

k ) →
k→∞

0.
(54)

Denoting

gk = (gk,1, · · · , gk,q)
τ �= d1(A)gn

k + d2(A)gm
k ,

from (54) we find that

T gk + ALgk →
k→∞

0. (55)

By the definition of gn
k , the first 2(r1 + r2 + L) elements of gk are zeros, i.e.,

gk,i = 0, i = 1, · · · , 2(r1 + r2 + L). This means that the last 2(r1 + r2 + L)

elements of T gk are zeros, i.e.,

T gk = (gk,q, gk,q−1, · · · ,︸ ︷︷ ︸
2(r1+r2+L)+L

gk,2(r1+r2+L)+1, 0, · · · , 0︸ ︷︷ ︸
2(r1+r2+L)

)τ . (56)

On the other hand,

ALgk = (0, · · · , 0,︸ ︷︷ ︸
2(r1+r2+L)+L

gk,2(r1+r2+L)+1, · · · , gk,q−L︸ ︷︷ ︸
2(r1+r2+L)

). (57)

By (55), from (56)(57) it is seen that gk →
k→∞

0, i.e.,

d1(A)gn
k + d2(A)gm

k →
k→∞

0.

From (52) it then follows that

gl
k →
k→∞

0, ∀l = 1, · · · , p,

i.e., h
(l)
k →

k→∞0, ∀l = 1, · · · p. But this is impossible, because hk are unit vectors.

Consequently, (36) is impossible and this proves the lemma. �
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